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ABSTRACT 
There are infinitely many isomorphism types of separable infinite-dimensional 
-oq'l spaces. 

A Banach space X is called an  ~ 1 , 2  space if for every finite-dimensional subspace 

B of X there is a finite-dimensional subspace C of X with C ~ B and an isomor- 

phism T from C onto l~ (n = dim C) such that 11 T L111 T-11L --< ~. A nanach 

space is called an -Y1 space if it is an .La 1 a space for some 2 < ~ .  These notions 

were introduced and studied in [1] and [3]. It is clear that every space which is 

isomorphic to an LI~)space  is an -Yt space. However, as shown in [1] and [3] 

there are .La I spaces which are not isomorphic to L l ~ )  spaces. There are only 

two isomorphsm types of separable infinite-dimensional L l ~  ) spaces, namely l~ 

and L~(0, 1). In [3] it was shown that there exist at least three more isomorphism 

types of separable infinite-dimensional .W~ spaces. We show here that there are 

infinitely many such types. This follows from 

THEOREM 1. Let X l and X2 be infinite-dimensional separable .£~'~ spaces. 

Let TI: It --* X1 and T2: ll --* X2 be quotient maps. Assume that the kernels 

Yl and Y2 of 7"1 and 7"2 respectively, are infinite-dimensional. Then Yl is iso- 

morphic to }'2 if and only if X1 is isomorphic to X2. 

The " i f "  is part proved in [2] and for it we do not need the assumption that  

X~ and X2 are -Yt spaces. The "only i f"  part is proved here, and from it we 

get the desired examples. Indeed, define inductively, for k = 0,1, 2 , . . . ,  the spaces 

Dk by Do = Li(0,1) and D~ = kernel Tk, where Tk: 11 --* Dk-1 is a quotient map. 

All the spaces D k are .W 1 spaces [3, Proposition 5.2-1. The space D O is not iso- 

morphic to a subspace of Ix and thus not to any of the Dk, k > 1. Therefore, 
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by Theorem 1, the (Dk}k~=O form a sequence of distinct isomorphic types of La 1 

spaces. 

Before we prove Theorem 1 let us make some further comments. It is easy to 

construct more examples of isomorphism types of separable infinite-dimensional 

o5¢f spaces; for example D k 0 D,, k # j .  On the other hand, the question 

of classifying all such isomorphism types looks quite hopeless. It is perhaps worth- 

while to recall the fact that a separable infinite-dimensional Banach space X 

is an 5¢ 1 space if and only if X* is isomorphic to l~ = m (cf. [-1]). 

As remarked above we have only to prove the "only i f"  part of Theorem 1. 

We actually prove (with the same notations as in Theorem 1) the following 

stronger statement. 

THEOREM 2. Every isomorphism from Yi onto Y2 extends to an automorphism 

of ll. 

PROOF. The proof follows the same lines as that of Theorem 1 in [2]. We 

have first to make the following two remarks. 

(a) Every bounded linear operator S: Y1 ~ li extends to a bounded linear 

operator S: 11 ~ l~. Indeed, since X1 is an ~ space there is an operator 

U: l* ~ X~' such that UF* is the identity map of X* (cf. [1]). Hence there 

is a projection P from l** onto Y** (the embedding of Y** in l** and of 

Y1 in Y** are the canonical ones). Thus S** P is an operator from l** into 

l~'* which extends S. Let Q be a projection from l~* onto I 1 . The restriction 

of QS**P to li has the desired property. 

(b) There is a projection P in 11 such that PYI = 0 and dimPl  t = ~ .  Indeed, 

X1 has a complemented subspace Z isomorphic to Ix (cf. [1]). Let Q be a pro- 

jection from X1 onto Z.  Since Ii has the lifting property there is an opreator 

U: Z ~ ll such that T~U is the identity of Z.  The projection P = UQT1 from ll 

onto UZ has the desired property. 

We recall also the fact that 

(c) an infinite-dimensional complemented subspace of li is isomorphic to li 

(cf. [43). 
Let now a: Y1 ~ Y2 be an isomorphism onto. By remarks (b) and (c) there 

exist subspaces Ui, U2, V, W1, W2 of l l ,  all isomorphic to l l ,  such that 

U1 ~ Y1, U2 = Yz and I 1 = U l ®  V =  U 2 ® W  1 0  W2. By remark (a) there 

exist bounded linear operators $1: U~ ~ U2 and Sz: U2 ~ U1 so that Sllr~ = tr 
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and S21r2  = o "-1  Let z : U i  ~ Wi be an isomorphism onto and define 

R : U I ~  U20)  W1 by 

R X  = S I X  -{- ~(X --  S 2 S I X ) ,  x e U t . 

Clearly RIr  ~ = a and a simple computat ion (cf. the proof  of  [2, Theorem 1-1) 

shows that R is an isomorphism into. We show that RU~ is a complemented 

subspace of U2 @ W1. Indeed, let P and Q be the natural projections of  U 2 (~ W1 

onto U 2 and W i respectively. Let x e U~ and y = Rx .  Then Py = S ix  and 

z - l Q y  = x - S2Slx  and thus x = z-  iQy + S2Py. It  follows that R ( z - I Q  + S2P) 

is a projection from U2 ® WI onto RU1. Since dim W2 = oo it follows that 

dimll /RU1 = oo and hence (use (c)) I 1 -- R U  1 O) W where W is isomorphic to 

l~. Let p: V ~  Wbe  an isomorphism onto. Then R @ p: UI @ V-~ RUI@ W is 

an automorphism of 11 which extends a .  Q.E.D. 

REMARK. Obviously Theorems 1 and 2 have analogues in the non-separable 

situation. 
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